بعد تصویری، پارامترهای احاطه گر گراف ها و همولوژی همبافت استقلال

پایان نامه
چکیده

فرض کنید g=(v,e) گرافی با مجموعه رئوس v و مجموعه یال e بوده و r=k[x1 , … , xn] حلقه چند جمله ای ها روی میدان k باشد. ایده آل i(g)، را ایده آل یالی گراف گوئیم هرگاه توسط تک جمله ای های xixj تولید شود که درآن {xi,xj} یالی از گراف است. زیرمجموعه ی w از مجموعه رئوس گراف را مستقل گوئیم هرگاه هیچ دو راسی از w مجاور نباشند. رابطه ی بسیار نزدیکی بین ایده آل یالی وهمبافت استقلال گراف،ind(g)، همبافتی با مجموعه رئوس v که وجه های آن مجموعه های مستقل g هستند، وجود دارد. به ازای هر گراف g، بعد تصویری g، pd(g)، همان بعد تصویری r-مدول ri(g) تعریف می شود. ثابت می کنیم که v(g) – i(g) < pd(g) < |v(g)| –{ epsilon(g) , tau(g) } و سر انجام با ارائه ی تعاریفی از ‎ c_{q}( delta ) ‎ و ‎ q-امین گروه همولوژی همبافت استقلال گراف، نتایجی را در باب کراندار کردن بعد تصویری گراف بیان می کنیم

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

انتشار احاطه گر در گراف ها

گراف ها اغلب به صورت مدل هایی از شبکه های ارتباطی مورد استفاده قرار می گیرند. فرض کنید یک ایستگاه رادیویی می خواهد امواج با ظرفیت های محدود را به شهرهایی مختلف منتشر کند. مدل این وضعیت را با یک گراف نمایش می دهند به طوری که رأس ها ایستگاه های مخابره کننده هستند و مجاورت دو رأس نشان می دهد که این رأس ها هر کدام در دامنه دیگری قرار دارند. هنگامی که مخابره کننده ها فرکانس مشابه منتشر می کنند تداخل...

15 صفحه اول

مجموعه های احاطه گر امن گراف ها

مجموعه های احاطه گر امن و رومن و رومن ضعیف و مجموعه احاطه گر و رابطه بین آنها بررسی شذه است . عدد اصلی مجموعه های زائد و احاطه گر امن برای درخت t با ماکزیموم درجه بزرگتر یا مساوی 3 بررسی می شود .

15 صفحه اول

نتایجی برای عدد احاطه گر ماکسیمال ۲-رنگین کمانی در گراف ها

تابع  یک تابع احاطه گر 2-رنگین کمانی  برای گراف  نامیده می­شود هرگاه برای هر راس  با شرط  داشته باشیم . وزن یک 2rdf  برابر است با . عدد احاطه گر 2-رنگین کمانی گراف  را که با نماد  نمایش می­دهیم کمترین وزن یک 2rdf در گراف  است. تابع احاطه­گر ماکسیمال 2-رنگین کمانی (m2rdf) برای گراف  یک تابع احاطه­گر 2-رنگین کمانی  می­باشد به­طوری که مجموعه­ی  یک مجموعه­ی احاطه­گر برای گراف  نباشد. وزن یک m2rdf  ...

متن کامل

بررسی مجموعه ی احاطه گر کلی بحرانی در گراف ها

فرض کنید g یک گراف ساده و غیر جهت دار با مجموعه رئوس v(g) باشد. مجموعه s?v(g) را یک مجموعه احاطه گر می نامیم، هرگاه هر راس در مجموعه v-s با بعضی رئوس s مجاور باشد. مجموعه s را یک مجموعه احاطه گر کلی می نامیم، هرگاه هر راس از مجموعه رئوس v(g) با بعضی رئوس s مجاور باشد و g[s]راس تنها نداشته باشد . عدد احاطه گر کلی برابر است با کمترین اندازه یک مجموعه احاطه گر کلی و با ?_t (g) نمایش می دهیم. گراف ...

15 صفحه اول

بررسی مجموعه های احاطه گر همبند در گراف ها

یک مجموعه ی احاطه گر همبند برای گراف g(v,e) زیر مجموعه ای مانند d از v است به طوری که هر رأس در v-d با حداقل یکی از اعضای d مجاور است و زیرگراف القایی روی مجموعه ی d همبند است. به اندازه ی کوچکترین مجموعه ی احاطه گر همبند، عدد احاطه گری همبندی می گویند و با gamma_{c}(g) نمایش می دهند. مفهوم احاطه گری همبندی در انواع شبکه ها از جمله شبکه های بیسیم ادهاک برای یافتن یک پشتیبان مجازی با اندازه ی می...

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه شهید مدنی آذربایجان - دانشکده ریاضی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023